

FIST: A Fast, Lightweight, FPGA-Friendly Packet Latency Estimator for NoC Modeling in Full-System Simulations

Michael K. Papamichael, James C. Hoe, Onur Mutlu Carnegie Mellon University, Pittsburgh, PA USA papamix@cs.cmu.edu, jhoe@ece.cmu.edu, onur@cmu.edu

Computer Architecture Lab at Carnegie Mellon

Simulation in Computer Architecture

- Slow for large-scale multiprocessor studies
 - Full-system fidelity + long benchmarks
- How can we make it faster?
- Speed, accuracy, flexibility trade-off

Full-system simulators sacrifice accuracy for speed and flexibility

Speed

Flexibility

Accuracy

The FIST Project

- Explores fast NoC models for full-system simulations
- FPGA-friendly, but avoid direct implementation
- Low error, many topologies, >10M packets/sec
- Simpler requirements of full-system simulation
 Estimate packet latencies, capture high-order effects

FIST Approach

- View NoC as set of routers/links
- Abstract router into black-box
- R R R
- Represent by load-delay curves
 Specific to each router configuration and traffic pattern

Accelerate simulation with FPGAs
 Can simulate up to millions of gates
 Orders of magnitude simulation speedup

Putting FIST Into Context	FIST-based Network Models	FIST Applicability
 Detailed network models Cycle-accurate network simulators (e.g. BookSim) Analytical network models Typically study networks under synthetic traffic patterns Train Curves Use Curves Use Curves Securves Model network within a broader simulated system Assign delay to each packet traversing the network Traffic generated by real workloads 	<text><list-item><list-item></list-item></list-item></text>	 "FIST-Friendly" Networks Exhibit stable, predictable behavior as load fluctuates Actual traffic similar to training traffic FIST Limitations Depends on fidelity, representativeness of training models Higher loads and large buffers can limit FIST's accuracy High network load → increased packet latency variance Large buffers → increased range of observed packet latencies Cannot capture fine-grain packet interactions Cannot replace cycle-accurate detailed network models MoCs are "FIST-Friendly" Employ simple routing algorithms Operate at low loads Small buffers

Evaluation

Methodology

- Software Implementation of FIST (written in C++)
- Examined online and offline FIST models
 - Replaced cycle-accurate NoC model in tiled CMP simulator
- Network and system configuration
 - 4x4, 8x8, 16x16 wormhole-routed mesh
 - Each network node hosts core+coherent L1 and a slice of L2
- Multiprogrammed and multithreaded workloads
 - 26 SPEC CPU2006 benchmarks of varying network intensity
 - 8 SPLASH-2 and 2 PARSEC workloads
- Traffic generated by cache misses
 - Consists of control, data and coherence packets
- Offline and Online FIST models with two curves per router
 - Curves represent injection and traversal latency at each router
 - Initial training using uniform random synthetic traffic
- Please see paper for more details!

Online Training in Action

Comparison against simple hop-based model

Related Work and Conclusions

Related Work

- Abstract network modeling
 - Performance vs. accuracy trade-off studies [Burger 95]

Elapsed cycles (in 1000s)

Speedup for 16x16 mesh using offline FIST: 43x Speedup for 16x16 mesh using online FIST: 18x

FPGA Implementation of FIST

- Hardware Implementation (written in Bluespec)
- Precisely replicates software-based FIST
- 3-4 orders of magnitude speedup (offline FIST)

	Virtex-5 LX155T			Virtex-6 LX760		
Size	BRAMs	LUTs	Freq.	BRAMs	LUTs	Freq.
4x4	8	1%	380 MHz	8	0%	448 MHz
8x8	32	5%	263 MHz	32	1%	443 MHz
12x12	72	11%	250 MHz	72	2%	375 MHz
16x16	128	20%	214 MHz	129	5%	375 MHz
20x20	200	32%	200 MHz	201	8%	319 MHz
24x24	-	-	-	289	12%	312 MHz

FPGA resource usage & clock frequency

Load-delay curve representation of network [Lugones 09]

- FPGAs for network modeling
 - Cycle-accurate fidelity at the cost of limited scalability
 - Time-multiplexing can help with scalability [Wang 10]
 - But still suffer from high implementation complexity

Conclusions

- Full-system simulators can tolerate small inaccuracies
- FIST can provide fast SW- or HW-based NoC models
- SW model provides 18x-43x average speedup w/ <2% error
 HW model can scale to 100s routers with >1000x speedup
- NoCs are "FIST-friendly"
 - But not all networks good candidates for FIST modeling

Future Directions

- FPGA-friendly NoC models at multiple levels of fidelity
- Configurable generation of hardware NoC models

Acknowledgements

Funding for this work has been provided by NSF CCF-0811702. We thank Xilinx for their FPGA and tool donations. We thank Bluespec for their tool donations and support.